An Axis-Shifted Grid-Clustering Algorithm
نویسندگان
چکیده
These spatial clustering methods can be classified into four categories: partitioning method, hierarchical method, density-based method and grid-based method. The grid-based clustering algorithm, which partitions the data space into a finite number of cells to form a grid structure and then performs all clustering operations to group similar spatial objects into classes on this obtained grid structure, is an efficient clustering algorithm. To cluster efficiently and simultaneously, to reduce the influences of the size and borders of the cells, a new grid-based clustering algorithm, an Axis-Shifted Grid-Clustering algorithm (ASGC), is proposed in this paper. This new clustering method combines a novel density-grid based clustering with axis-shifted partitioning strategy to identify areas of high density in the input data space. The main idea is to shift the original grid structure in each dimension of the data space after the clusters generated from this original structure have been obtained. The shifted grid structure can be considered as a dynamic adjustment of the size of the original cells and reduce the weakness of borders of cells. And thus, the clusters generated from this shifted grid structure can be used to revise the originally obtained clusters. The experimental results verify that, indeed, the effect of this new algorithm is less influenced by the size of cells than other grid-based ones and requires at most a single scan through the data.
منابع مشابه
An Axis-shifted Crossover-Imaged Clustering Algorithm
With low computation time, the grid-based clustering algorithms are efficient clustering algorithms, but the size of the predefined grids and the threshold of the significant cells are seriously influenced their effects. In grid-based clustering system, the data space is partitioned into a finite number of cells to form a grid structure and then performs all clustering operations on this obtain...
متن کاملResearch on Cluster Analysis of High Dimensional Space Based on Fuzzy Extension
Traditional spatial data are generally high dimensional features, and in the clustering of high dimensional data can be directly applied to data processing because of Dimension effect and the data sparseness problem. For CLIQUE algorithm, which usually have the problem such as prone to non-axis direction of overclustering, boundary judgment of fuzzy clustering and smoothing clustering. In this ...
متن کاملAn Incremental DC Algorithm for the Minimum Sum-of-Squares Clustering
Here, an algorithm is presented for solving the minimum sum-of-squares clustering problems using their difference of convex representations. The proposed algorithm is based on an incremental approach and applies the well known DC algorithm at each iteration. The proposed algorithm is tested and compared with other clustering algorithms using large real world data sets.
متن کاملAn Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering
The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...
متن کاملAn Improved SSPCO Optimization Algorithm for Solve of the Clustering Problem
Swarm Intelligence (SI) is an innovative artificial intelligence technique for solving complex optimization problems. Data clustering is the process of grouping data into a number of clusters. The goal of data clustering is to make the data in the same cluster share a high degree of similarity while being very dissimilar to data from other clusters. Clustering algorithms have been applied to a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009